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Abstract—Learning-based interest point detection methods like
SuperPoint are extremely fast to execute and perform well real
time compared to classical interest point detection methods like
SIFT [1], however, they achieve poor repeatability in comparison
[2]. Repeatability is a metric that evaluates the geometric stability
of interest points under different transformations. We propose
the use of deformable convolutions [3] in the detector head
of learning based interest point detectors such as SuperPoint,
since they are known for their ability to learn features that can
adapt to geometric variations of objects. With this improvement
implemented in the detector head of SuperPoint model, we
demonstrate the improvement in a variety of metrics. We also
evaluate the D-SuperPoint model on downstream tasks like 3D
reconstruction using ColMap and analyze the results.

I. INTRODUCTION

We aim to answer the question — do deformable convolu-
tions improve the performance of CNN-based interest point
detectors?

Several geometric vision tasks like Structure from Motion
(SfM) and camera calibration require a robust set of interest
points between two image frames. Interest points are pixels
that represent unique geometric information about objects in
the image - lines, corners, etc. Further, interest points must
also be repeatable under varying lighting and views. Most
algorithms for vision tasks assume a reliable set of extracted
and matched interest points. However, it is challenging to
extract high quality interest points from real-world images.

Classical interest point detectors such as Harris Corner
Detector, SIFT, and so on, use a sliding window approach. In
contrast, learning-based detectors rely on fully convolutional
layers to extract features. Classical methods are efficient and
produce interest points with high repeatability. However, they
are not suitable for real-time applications due to high inference
times. This is where learning-based detectors can significantly
outweigh classical detectors with low inference times and with
some architecture tweaks, improved reliability.

While regular convolutions, used by learning-based de-
tectors, have achieved success for visual recognition tasks,
their ability to model geometric transformations is limited.
This is due to the static nature of the convolution layer that
samples the input image only at fixed locations. To tackle
this, the training data requires extensive data augmentation,
or new ways of feature pooling may be required. Deformable
Convolutional Networks [3] propose a new type of convolution
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layer called Deformable Convolution, proven to improve a
model’s ability to model geometric transformation.

We hypothesize that if interest points are focused on the
spatial geometry of the objects in the image, they can be more
repeatable and robust. This is because objects of interest are
repeated between image pairs and often have more interesting
features than the background. Therefore, observing maximum
interest points on the object and its boundary can improve
interest point detection repeatability. We propose the use
of deformable convolution layers in current state-of-the-art
learning-based interest point detectors. For the purpose of this
project, we picked SuperPoint.

A. SuperPoint

SuperPoint is a self-supervised framework for training in-
terest point detectors and descriptors. [2] Interest points are
semantically ambiguous. What may seem like a good interest
to one, may not be the same for another. Since most learning-
based methods today rely on human-annotated ground truths,
how can we overcome this problem of supervision? SuperPoint
solves this problem by adopting a self-supervised approach.
MagicPoint, SuperPoint’s interest point detector, is first trained
on millions of synthetic images. These synthetic images have
simple geometrical figures like lines, quadrilaterals, ellipses,
and so on, and have obvious interest points. To adapt this
interest point detector to real-world images, Homographic
Adaptation (HA) is used. Target, unlabeled, real-world images
are warped into random homographic transformations and
ground-truth interest points are generated. These generated
ground truths are used to train a fully-convolutional network
that extracts interest points and descriptors from test images.

MagicPoint combined with the descriptor head completes
the SuperPoint architecture. Figure 1 shows the different stages
of the SuperPoint training pipeline.
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Fig. 1. SuperPoint training pipeline
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The authors of SuperPoint conclude that the network has a
competitive repeatability score against classical methods and
outperforms when evaluated for homography estimation.

B. Deformable Convolutions

Deformable convolutions add 2D offsets to the regular
kernel grid used in standard convolutions. This allows the
convolution kernel to change its shape from a 2D n x n
and “deform” into a free-form shape, slowly adapting to
the geometric spatial extent of the object of interest. The
aforementioned offsets are learned by the model. The inference
time of CNNs is not affected by these additional learned
parameters since the number of parameters is increased only
linearly. Figure 2 shows a deformable convolution layer with
learned offsets.

Deformable Convolutions v2 incorporates the deformable
convolution layer from earlier but introduces a new modulation
strategy where samples are also modulated based on learned
feature amplitude.

Fig. 2. Example of detected features and resulting segmentation mask using
Deformable Convolutions.

II. PRIOR WORK

Classical Interest Point Detectors such as Harris Corner
detectors [3] and SIFT [4] use sliding window or kernel-based
techniques to detect the amount of change seen around a pixel.
However, these are all hand-crafted, computationally heavy
techniques (except for ORB which is an efficient rotation
invariant version of the FAST detector) and do not perform
well real time.

CNN-Based Interest Point Detectors such as LIFT [7],
SuperPoint [2], SIPs [4] and KP2D [8] have the central idea
of leveraging CNNs to learn per pixel interest scores using
a series of VGG-like convolutional layers. These methods
have lower repeatability scores than classical methods, and
do not perform on par with classical techniques when there
are geometric transformations involved.

There is no significant work that integrates deformable
convolutions [3] with interest point detectors and descriptors.
However, d-convs have been successfully used for feature
extraction in several applications such as 3D object detection
and segmentation [10], learning temporal pose estimation from
sparsely-labeled videos, video super-resolution [9], and so on.
These works have shown that deformable convolutions help in

learning better geometric features and adapt well to geometric
transformations.

III. IMPLEMENTATION

Our implementation majorly involves writing the de-
formable convolution layer in PyTorch, replacing the convo-
lutions in SuperPoint’s detector head with deformable con-
volutions and replicating the training and evaluation steps of
SuperPoint.

A. The Deformable Convolution Layer

The Deformable Convolution layer was implemented with
the help of PyTorch TorchVision’s deform_conv2d. This
implements version 2 of deformable convolutions that have
learnable offsets as well as learnable modulation scalars.

For convolution kernels of dimension n x n, offsets are of
dimension 2 X n X n in order to learn feature offsets along
the height and width of the image. Offsets spread the learned
convolution kernel features across space, thus giving flexibility
to learn a particular object’s features even when it undergoes
geometric transformations.

The modulation scalars are of the same dimension as
the kernels (n x n). The modulation units are capable of
modulating the input feature amplitudes, and can thus choose
to modify the features in certain spatial bins of the image. This
leads to more flexibility for learning focused representations
of objects of interest. Figure 3 illustrates this approach.
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Fig. 3. Deformable Convolution V2

We believe that these two characteristic features of de-
formable convolutions will result in interest points that are
repeatable across homographies, and are also focused on
objects of interest.

B. MagicPoint Dataset Generation and Training

This step is adapted from SuperPoint’s implementation, and
involves simultaneously training the MagicPoint Architecture
while generating the synthetic shapes data. Figure 4 illustrates
the auto labeled synthetic shapes dataset which is trained
on the base detector that has been replaced with deformable
convolutions.
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Fig. 4. Labeled Synthetic Shapes Dataset
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C. SuperPoint Data Setup and Training

With the trained MagicPoint model, we generate interest
point ground truth labels on the MS-COCO dataset. This step
also performs the homography adaptation from SuperPoint
where ground truth labels are generated for randomly homo-
graphized MS-COCO images as well.

Using the ground truth labels generated, joint training of the
full SuperPoint Architecture is performed. By joint training,
it means that the training optimizes two losses, namely the
interest point loss and the descriptor loss.

The interest point loss minimizes the distance of the de-
tected interest points from the ground truth interest points
using a simple convolutional cross entropy loss. Given a
known homography (and hence known correspondences) be-
tween a pair of images, the descriptor loss maximizes the
probability of repeatability of the interest point detections in
the transformed image. Figure 5 shows an example image pair
with detected interest points in the original image as well as
the homographized image.
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Fig. 5. Interest Point detections on original and transformed image

IV. EVALUATION
A. Experiments

We conducted two major experiments. First, we trained
DMagicPoint (MagicPoint with deformable convolutions). We
generated the synthetic dataset and trained the DMagicPoint
model for 100,000 iterations. Some results can be seen in Fig-
ure 4. We performed only qualitative analysis on DMagicPoint
since it is merely trained on synthetic shapes. Qualitatively,
DMagicPoint performs on par with MagicPoint. In most cases,
the model is capable of detecting the interest points of the
shape. Next, we used Homographic Adaptation to generate

pseudo-ground-truth labels on the MS COCO dataset. We
trained DSuperPoint (SuperPoint with deformable convolu-
tions) supervised by these generated groundtruth labels, for
50,000 iterations. This model was then qualitatively and quan-
titively evaluated on the HPatches dataset for several metrics
mentioned in the following section. The HPatches [11] is a
dataset used for local patch descriptor evaluation. It comprises
116 image sequences of 6 images with known homography.

B. Metrics

1) Mean Localization Error (MLE): Localization error is
defined as the average L1 distance error between the detected
interest point and ground truth interest point, across all interest
points. The value of this error is between 0 and e, where a
lower value signifies better interest points.

2) Repeatabilty: Given an interest point in an original
image, repeatability is the probability of finding the same
interest point in the warped image as well. A high repeatability
score shows that the interest point detector is invariant to
homography transformations.

3) NN mAP: This metric measures the differentiating abil-
ity of the descriptor. At different distance thresholds, nearest-
neighbor matching is performed and the area under curve is
computed and averaged.

4) M Score: This metric is a measure of the efficacy of
the interest point detector and descriptor. It is a ratio of the
number of ground truth correspondences recovered over the
total number of features in the shared region of the image
pair.

5) Homography Estimation: Given a known homography
between a pair of images, we estimate the ability to calculate
this homography from the detected and matched interest
points.

C. Comparison to Baseline SuperPoint on HPatches Dataset

Qualitatively, we can observe that our hypothesis was cor-
rect: DSuperPoint is able to detect more interest points on the
objects of interest rather than on the background. Some of
these results are illustrated in Figure 6.

SuperPoint DSuperPoint (ours)

Fig. 6. SuperPoint vs DSuperPoint results. The red circles show minimum
interest points detected in low-interest areas.



Quantitatively, our DSuperPoint model reaches loss conver-
gence in 50,000 iterations as opposed to SuperPoint which
is trained for 100,000 iterations. DSuperPoint outperforms
SuperPoint in the detector metrics, namely repeatability and
MLE as shown in Figure 7.

Detector Metrics Descriptor Metrics

Repeatability MLE NN mAP M Score
DSuperPoint (Ours) .624 1.100 682 .396
SuperPoint 581 1.158 821 470
LIFT 449 1.102 664 315
SIFT 495 0.833 694 313
ORB 641 1.157 753 .266

Fig. 7. Detector and Descriptor Metrics

DSuperPoint also achieves significantly higher scores in ho-
mography estimation, especially with smaller distance thresh-
olds as furnished in Figure 8.

Homography Estimation
g=1 | €=3 E=5
DSuperPoint (Ours) 425 703 768
SuperPaint 310 684 .829
LIFT .284 .598 T17
SIFT 424 676 759
ORB 150 395 .538

Fig. 8. Homography Estimation Metrics

D. Downstream Task evaluation: 3D reconstruction

Other than evaluation on just 2D images, the significance
of interest point detection is more in downstream tasks that
involve 3D such as SLAM and 3D Reconstruction. Therefore,
we perform a comparative analysis of the reconstruction of a
3D scene using SuperPoint and DSuperPoint as the interest
point detectors. For this analysis, we use supercolmap
[12], an open source library which replaces the classical SIFT
interest point detector in colmap with SuperPoint.

Figure 9 shows the qualitative results of the ColMap
reconstruction. Though not obvious, on closer observation,
we can notice sharper edges and better reconstruction to-
wards the top of the building. Some areas that appeared
sparse in the SuperPoint reconstruction appeared denser in the
DSuperPoint Reconstruction. This proved that more interest
points were produced on the object of interest rather than on
the background. Quantitatively, DSuperPoint results in lesser
reprojection error (0.61) in comparison with SuperPoint (0.62).

This evaluation was performed by only generating 5000
interest points. We believe that better results would be pro-
duced when more interest points are generated. Therefore, de-
formable convolutions produce promising quantitative results
even on downstream 3D tasks.

V. CONCLUSION

In the work, we showed that deformable convolutions have
the potential for improving the repeatability and minimizing

SuperPoint
Mean Reproj Error = 0.62149

DSuperPoint (ours)
Mean Reproj Error = 0.619962

Fig. 9. 3D reconstruction using interest points from SuperPoint and De-
formable Superpoint

localization error of learning-based interest point detectors.
Furthermore, when used for downstream tasks like homog-
raphy estimation or SfM, we proved that these new interest
points perform better. While homography estimation gives
significantly better results than learning-based and classical
methods, STM shows minor improvement.
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